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Abstract Bonchev and Kier proposed sometime ago the extended connectivity
indices, which may be used in structure–property–activity modeling. We establish
some properties, mainly various lower and upper bounds for the first extended zeroth-
order connectivity index 0χ1 and the first extended first-order connectivity index 1χ1.
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1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G) [1]. For v ∈ V (G),
�(v) denotes the set of its (first) neighbors in G and the degree of v is dv = |�(v)|.
Denote by uv or vu the edge of G connecting vertices u and v.

The zeroth-order connectivity index 0χ(G) and the first-order connectivity index
(also called the Randić index [2,3] or simply the connectivity index [4]) 1χ(G) of the
graph G are defined respectively as [5,6]

B. Zhou (B)
Department of Mathematics, South China Normal University, Guangzhou 510631, China
e-mail: zhoubo@scnu.edu.cn

N. Trinajstić
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0χ(G) =
∑

v∈V (G)

d−1/2
v ,

1χ(G) =
∑

uv∈E(G)

(dudv)
−1/2.

1χ is one of the most popular descriptors and have found countless QSPR and QSAR
applications, see, e.g. [7–11]. 0χ is also used to develop structure-based correlations
for physical properties, see, e.g. [12].

In [13], Bonchev and Kier proposed the extended connectivity indices 0χk , 1χk .

For a nonnegative integer k, the kth extended zeroth-order connectivity index 0χk(G)

and the kth extended first-order connectivity index 1χk(G) of the graph G are defined
respectively as

0χk(G) =
∑

v∈V (G)

(
kdv

)−1/2
,

1χk(G) =
∑

uv∈E(G)

(
kdu · kdv

)−1/2
,

where 0dv = dv and kdv = ∑
u∈�(v)

k−1du for k ≥ 1. Evidently, 0χ0 = 0χ , 1χ0 = 1χ.

Note that in [13], the cases k = 1, 2, 3, 4 were considered. Toropov et al. [14] showed
that the extended connectivity indices may be used for structure–property studies.

In this report, we establish some properties, mainly various lower and upper bounds
for the first extended zeroth-order connectivity index

0χ1(G) =
∑

v∈V (G)

(
1dv

)−1/2

and the first extended first-order connectivity index

1χ1(G) =
∑

uv∈E(G)

(
1du · 1dv

)−1/2
.

For simplicity, let Dv = 1dv = ∑
u∈�(v) du .

2 Results

Let G be a connected simple graph. Recall that the first M1(G) and the second M2(G)

Zagreb indices are defined respectively as [15–18]

M1(G) =
∑

v∈V (G)

d2
v ,

M2(G) =
∑

uv∈E(G)

dudv.
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Let Kn be the complete graph with n vertices [1]. Let Kn1,n2,...,ns be the complete
s-partite graph [1] with respectively ni vertices in i th partite sets for i = 1, 2, . . . , s.
Let Sn = K1,n−1 be the star with n vertices [1].

For any non-isolated vertex v ∈ V (G), we have Dv ≥ dv with equality if and
only if any neighbor of v has degree one. Thus, if G has no isolated vertices, then
0χ1(G) ≤ 0χ0(G) and 1χ1(G) ≤ 1χ0(G) with either equality if and only if G is the
vertex-disjoint union of complete graphs with two vertices. It follows that for any con-
nected graph G with at least three vertices, 0χ1(G) < 0χ0(G) and 1χ1(G) < 1χ0(G).

In the following we establish further properties of 0χ1 and 1χ1. We first consider
0χ1.

Proposition 1 Let G be a graph with n vertices and no isolated vertices. Then

0χ1(G) ≥
√

n3

M1(G)

with equality if and only if all Dv are equal.

Proof By the Cauchy–Schwarz inequality, we have

0χ1(G) =
∑

v∈V (G)

1√
Dv

≥ n2

∑
v∈V (G)

√
Dv

≥ n2

√
n

∑
v∈V (G)

Dv

with equalities if and only if all Dv are equal. Note that

∑

v∈V (G)

Dv =
∑

v∈V (G)

∑

u∈�(v)

du =
∑

u∈V (G)

∑

v∈�(u)

du =
∑

u∈V (G)

du

∑

v∈�(u)

1 = M1(G).

The result follows. ��
By Proposition 1, upper bounds for M1(G) may be used to deduce lower bounds for

0χ1(G). Note that various upper bounds for M1(G) have been known, see, e.g. [18–
23]. As an example, we give the following proposition. The Moore graphs of diameter
2 are the regular graphs of diameter 2 and girth 5. They are pentagon, Petersen graph,
Hoffman–Singleton graph, and possibly a 57-regular graph with 572 + 1 = 3250
vertices whose existence is still an open problem, see, e.g. [21,24].

Proposition 2 Let G be a triangle- and quadrangle-free graph with n vertices and
no isolated vertices. Then

0χ1(G) ≥ n√
n − 1

with equality if and only if G is the star or a Moore graph of diameter 2.
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Proof Since G is triangle- and quadrangle-free, we have [21]

M1(G) ≤ n(n − 1)

with equality if and only if G is the star or a Moore graph of diameter 2. Since the
Moore graphs of diameter 2 are regular, all Dv are equal. Now the result follows from
Proposition 1 easily. ��

Let G be a tree with n ≥ 2 vertices. Then by Proposition 2 , 0χ1(G) ≥ n/
√

n − 1
with equality if and only if G = Sn .

Now we consider properties of 1χ1.

Proposition 3 Let G be a graph with n vertices and no isolated vertices. Then

1χ1(G) ≤ 1

2

∑

v∈V (G)

dv

Dv

with equality if and only if Du = Dv for any pair of adjacent vertices u and v. More-
over, if G possesses m edges, maximum vertex degree � and minimum vertex degree
δ such that 2m − (n − 1)� + (� − 1)δ > 0, then

1χ1(G) ≤ m

2m − (n − 1)� + (� − 1)δ

with equality if and only if G is a regular graph. ��

Proof It is easily seen that

1χ1(G) = 1

2

⎡

⎣
∑

uv∈E(G)

(
1

Du
+ 1

Dv

)
−

∑

uv∈E(G)

(
1√
Du

− 1√
Dv

)2
⎤

⎦

= 1

2

∑

v∈V (G)

dv

Dv

− 1

2

∑

uv∈E(G)

(
1√
Du

− 1√
Dv

)2

≤ 1

2

∑

v∈V (G)

dv

Dv

with equality if and only if Du = Dv for any pair of adjacent vertices u and v.

Since Dv = ∑
u∈�(v) du, we have Dv ≥ 2m −dv − (n −1−dv)� = 2m − (n −1)

�+(�−1)dv with equality for the vertex v if and only if either dv = n −1 or du = �

for any vertex u (different from v) that is not adjacent to v, and thus with equality for
all vertices of G if and only if either G = Kn or any pair of non-adjacent vertices has
equal degree �, i.e., G is regular since � is the maximum vertex degree.
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Note that
∑

v∈V (G) dv = 2m and that if G is a regular graph then Du = Dv for any
pair of vertices u and v. Thus

1χ1(G) ≤ 1

2

∑

v∈V (G)

dv

2m − (n − 1)� + (� − 1)dv

≤ 1

2

∑

v∈V (G)

dv

2m − (n − 1)� + (� − 1)δ

= m

2m − (n − 1)� + (� − 1)δ

with equalities if and only if G is a regular graph. ��
Let G be a graph with n vertices. From Proposition 3, we have

1χ1(G) ≤ 1

2

∑

v∈V (G)

dv

Dv

≤ 1

2

∑

v∈V (G)

dv

dv

≤ n

2

with equalities if and only if G has no isolated vertex and Dv = dv for any vertex v,

i.e., G is the vertex-disjoint union of complete graphs with two vertices.

Proposition 4 Let G be a graph with n vertices, m edges, minimum vertex degree δ

and no isolated vertices. Then

1χ1(G) ≥
m3/2

[
m (2m − (n − 1)δ)2 + (2m − (n − 1)δ) (δ − 1)M1(G) + (δ − 1)2M2(G)

]1/2

(1)

with equality if and only if G is a regular graph or the star.

Proof By the Cauchy–Schwarz inequality, we have

1χ1(G) =
∑

uv∈E(G)

(Du Dv)
−1/2 ≥ m2

∑
uv∈E(G)

(Du Dv)
1/2 ≥ m2

(
m

∑
uv∈E(G)

Du Dv

)1/2

with equalities if and only if Du = Dv for any pair of adjacent vertices u and v. For
any vertex v, Dv ≤ 2m − dv − (n − dv − 1)δ = 2m − (n − 1)δ + (δ − 1)dv with
equality if and only if either dv = n − 1 or du = δ for any vertex u (different from v)
that is not adjacent to v. Notethat

∑
uv∈E(G) (du + dv) = M1(G). Thus
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∑

uv∈E(G)

Du Dv ≤
∑

uv∈E(G)

[2m − (n − 1)δ + (δ − 1)du] [2m − (n − 1)δ + (δ − 1)dv]

= m [2m − (n − 1)δ]2 + [2m − (n − 1)δ] (δ − 1)
∑

uv∈E(G)

(du + dv)

+ (δ − 1)2
∑

uv∈E(G)

dudv

= m [2m − (n − 1)δ]2 + [2m − (n − 1)δ] (δ − 1)M1(G)

+ (δ − 1)2M2(G).

Now (1) follows and equality holds in (1) if and only if Du = Dv for any pair of
adjacent vertices u and v and Dv = 2m − (n − 1)δ + (δ − 1)dv for any vertex v, or
equivalently G is a regular graph if δ > 1 and G is the star if δ = 1. ��

The clique number of a graph G is the number of vertices in a largest complete
subgraph of G, denoted by ω(G). We will use a theorem of Motzkin and Straus [25],
which we state a somewhat differently from the original version.

Lemma 5 ([25]) Let G be a graph and let xv ≥ 0 forv ∈ V (G)with
∑

v∈V (G) xv = 1.

Then
∑

uv∈E(G) xu xv ≤ ω(G)−1
2ω(G)

with equality if and only if the subgraph induced by
the vertices v ∈ V (G) with xv > 0 is a complete ω(G)-partite graph such that the
sum of the xv’s in each part is the same.

Proposition 6 Let G be a graph with m ≥ 1 edges and clique number ω. Then

1χ1(G) ≥
√

2ωmm√
ω − 1M1(G)

(2)

with equality when G has no isolated vertices if and only if G is a regular complete
ω-partite graph.

Proof From the proof of Proposition 4,

1χ1(G) ≥ m3/2

[
∑

uv∈E(G)

(Du Dv)

]1/2 .

Note that
∑

v∈V (G) Dv = M1(G). For v ∈ V (G), let xv = Dv

M1(G)
if dv > 0 and

xv = 0 if dv = 0. Then xv ≥ 0 for v ∈ V (G) with
∑

v∈V (G) xv = 1. By Lemma 5,

∑

uv∈E(G)

Du

M1(G)
· Dv

M1(G)
≤ ω − 1

2ω

i.e.,
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∑

uv∈E(G)

Du Dv ≤ ω − 1

2ω
M1(G)2

and then (2) follows.
Suppose that G has no isolated vertices and that equality holds in (2). Note that xv>0

for any v ∈ V (G). By Lemma 5, G is a complete ω-partite graph, say G = Kn1,...,nω ,
and the sum of the xv’s in each partite set is the same. Then ni

∑
k �=i nk(n − nk) =

n j
∑

k �= j nk(n − nk), i.e., (ni − n j )[∑k �=i, j nk(n − nk) + ni n j ] = 0, i.e., ni = n j

for any 1 ≤ i < j ≤ ω. Conversely, it is easily checked that (2) is an equality for a
regular complete ω-partite graph. ��

Let G be a Kr+1-free graph with n vertices, m ≥ 1 edges, where 2 ≤ r ≤ n − 1.

Then ω(G) ≤ r and by Proposition 6,

1χ1(G) ≥
√

2rmm√
r − 1M1(G)

with equality when G has no isolated vertices if and only if G is a regular complete
r -partite graph. Recall that M1(G) ≤ 2r−2

r nm (see [23]). Then

1χ1(G) ≥ r
√

rm

(r − 1)
√

2(r − 1)n

with equality when G has no isolated vertices if and only if G is a regular complete
r -partite graph.

The vertex-disjoint union of graphs G and H is denoted by G ∪ H, pG denotes
the vertex-disjoint union of p copies of G.

Proposition 7 Let G be a K1,1,s+1- and K2,t+1-free graph with n ≥ max{s +3, t +3}
vertices, m ≥ 1 edges, where 0 ≤ s ≤ t. Then

1χ1(G) ≥ m3/2

[
t2(n − 1)2m + t (n − 1)(s + 1 − t)M1(G) + (s + 1 − t)2 M2(G)

]1/2

(3)

with equality if and only if G is a strongly regular graph (each pair of adjacent verti-
ces in G has exactly s common neighbors and each pair of non-adjacent vertices has
exactly t common neighbors), or s = t = 0 and G = aK2 ∪ bK1 with n = 2a + b,

or s = 0, t = 1 and G = Sn .

Proof From the proof of Proposition 4,

1χ1(G) ≥ m3/2

(
∑

uv∈E(G)

Du Dv

)1/2 .
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It is known [23] that Dv ≤ (s + 1 − t)dv + t (n − 1) with equality if and only if v has
exactly s neighbors in common with any of its neighbor and has exactly t neighbors
in common with any vertex (different from v) non-adjacent to it. Thus

∑

uv∈E(G)

Du Dv ≤
∑

uv∈E(G)

[(s + 1 − t)du + t (n − 1)] [(s + 1 − t)dv + t (n − 1)]

= t2(n − 1)2m + t (n − 1)(s + 1 − t)
∑

uv∈E(G)

(du + dv)

+ (s + 1 − t)2
∑

uv∈E(G)

dudv

= t2(n − 1)2m + t (n − 1)(s + 1 − t)M1(G) + (s + 1 − t)2 M2(G).

Now (3) follows and equality holds in (3) if and only if (i) Du = Dv for any pair of
adjacent vertices u and v, and (ii) each pair of adjacent vertices in G has exactly s
common neighbors and each pair of non-adjacent vertices in G has exactly t common
neighbors. Recently there is a result obtained by Gera and Shen [26]: If G is an irregu-
lar graph in which each pair of adjacent vertices has exactly s common neighbors and
each pair of non-adjacent vertices in G has exactly t common neighbors, then either
t = 0 and G = aKs+2 ∪ bK1 with n = a(s + 2)+ b or t = 1 and G = K1 ∨aKs+1 is
the graph obtained by adding all edges between a vertex and vertices of aKs+1 with
n = a(s + 1) + 1. It follows that (ii) is equivalent to G is a strongly regular graph, or
s = t = 0 and G = aK2 ∪ bK1 with n = 2a + b,or s = t = 1 and G is the graph Wn

obtained by adding n−1
2 independent edges to the star with odd n, or s = 0, t = 1 and

G = Sn . Note that (i) does not hold for Wn when s = t = 1. Now the result follows
easily. ��

If G is a quadrangle-free graph with n ≥ 4 vertices and m ≥ 1 edges, then by
Proposition 7 with s = t = 1,

1χ1(G) >
m3/2

[
(n − 1)2m + (n − 1)M1(G) + M2(G)

]1/2 .

The inequality is strict because by the Friendship theorem [27,28], the graph in which
each pair of (distinct) vertices in G has exactly one common neighbor must be Wn .

If G is a quadrangle-free graph with n ≥ 4 vertices and m ≥ 1 edges, then by
Proposition 7 with s = 0, t = 1,

1χ1(G) ≥ m

n − 1

with equality if and only if G is a strongly regular graph in which each pair of adjacent
vertices in G has no common neighbors and each pair of non-adjacent vertices has
exactly 1 common neighbor, or G = Sn . A strongly regular graph with n vertices in
which each pair of adjacent vertices in G has no common neighbors and each pair of
non-adjacency vertices has exactly 1 common neighbor is regular of degree

√
n − 1,
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and thus it is a Moore graph of diameter 2. Thus the bound for 1χ1(G) is attained if
and only if G is a Moore graph of diameter 2, or G = Sn .
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